Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 322(6): C1201-C1213, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35442826

RESUMO

Hyaluronan is a versatile macromolecule capable of an exceptional range of functions from cushioning and hydration to dynamic signaling in development and disease. Because of its critical roles, hyaluronan production is regulated at multiple levels including epigenetic, transcriptional, and posttranslational control of the three hyaluronan synthase (HAS) enzymes. Precursor availability can dictate the rate and amount of hyaluronan synthesized and shed by the cells producing it. However, the nucleotide-activated sugar substrates for hyaluronan synthesis by HAS also participate in exquisitely fine-tuned cross-talking pathways that intersect with glycosaminoglycan production and central carbohydrate metabolism. Multiple UDP-sugars have alternative metabolic fates and exhibit coordinated and reciprocal allosteric control of enzymes within their biosynthetic pathways to preserve appropriate precursor ratios for accurate partitioning among downstream products, while also sensing and maintaining energy homeostasis. Since the dysregulation of nucleotide sugar and hyaluronan synthesis is associated with multiple pathologies, these pathways offer opportunities for therapeutic intervention. Recent structures of several key rate-limiting enzymes in the UDP-sugar synthesis pathways have offered new insights to the overall regulation of hyaluronan production by precursor fate decisions. The details of UDP-sugar control and the structural basis for underlying mechanisms are discussed in this review.


Assuntos
Ácido Hialurônico , Uridina Difosfato N-Acetilglicosamina , Glicosaminoglicanos , Hialuronan Sintases/genética , Ácido Hialurônico/metabolismo , Nucleotídeos , Açúcares , Uridina Difosfato N-Acetilglicosamina/metabolismo
2.
Oncotarget ; 12(19): 1886-1902, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34548906

RESUMO

Glucuronidation controls androgen levels in the prostate and the dysregulation of enzymes in this pathway is associated with castration resistant prostate cancer. UDP-glucose dehydrogenase (UGDH) produces UDP-glucuronate, the essential precursor for glucuronidation, and its expression is elevated in prostate cancer. We compared protein and metabolite levels relevant to the glucuronidation pathway in five prostate cancer patient-derived xenograft models paired with their isogenic counterparts that were selected in vivo for castration resistant (CR) recurrence. All pairs showed changes in UGDH and associated enzymes and metabolites that were consistent with those we found in an isogenic androgen dependent (AD) and CR LNCaP prostate cancer model. Ectopic overexpression of UGDH in LNCaP AD cells blunted androgen-dependent gene expression, increased proteoglycan synthesis, significantly increased cell growth compared to controls, and eliminated dose responsive growth suppression with enzalutamide treatment. In contrast, the knockdown of UGDH diminished proteoglycans, suppressed androgen dependent growth irrespective of androgens, and restored androgen sensitivity in CR cells. Importantly, the knockdown of UGDH in both LNCaP AD and CR cells dramatically sensitized these cells to enzalutamide. These results support a role for UGDH in androgen responsiveness and a target for therapeutic strategies in advanced prostate cancer.

3.
J Histochem Cytochem ; 69(1): 13-23, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32749901

RESUMO

Regulation of proteoglycan and glycosaminoglycan synthesis is critical throughout development, and to maintain normal adult functions in wound healing and the immune system, among others. It has become increasingly clear that these processes are also under tight metabolic control and that availability of carbohydrate and amino acid metabolite precursors has a role in the control of proteoglycan and glycosaminoglycan turnover. The enzyme uridine diphosphate (UDP)-glucose dehydrogenase (UGDH) produces UDP-glucuronate, an essential precursor for new glycosaminoglycan synthesis that is tightly controlled at multiple levels. Here, we review the cellular mechanisms that regulate UGDH expression, discuss the structural features of the enzyme, and use the structures to provide a context for recent studies that link post-translational modifications and allosteric modulators of UGDH to its function in downstream pathways.


Assuntos
Proteoglicanas/metabolismo , Açúcares/metabolismo , Uridina Difosfato Glucose Desidrogenase/metabolismo , Regulação Alostérica , Animais , Vias Biossintéticas , Humanos , Modelos Moleculares , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Uridina Difosfato Glucose Desidrogenase/química
4.
Methods Mol Biol ; 1952: 103-110, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30825169

RESUMO

Particle exclusion assays are used to visualize pericellular envelopes with a high content of hyaluronan. Pericellular hyaluronan is basally abundant in certain cell types while in others it is deposited in a highly dynamic manner in response to specific conditions and its presence may indicate cellular status. This assay, described here, is a quick semiquantitative approach to detecting pericellular hyaluronan using the hyaluronan-binding proteoglycan, aggrecan, to stabilize and amplify the surface matrix. Hyaluronan matrix can then be observed and quantified by microscopic image analysis of clear zones around individual cells, from which exogenously added fixed red blood cell particles are excluded.


Assuntos
Matriz Extracelular/química , Imunofluorescência/métodos , Ácido Hialurônico/análise , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Agrecanas/metabolismo , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Humanos , Ácido Hialurônico/metabolismo
5.
Matrix Biol ; 78-79: 165-179, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29753676

RESUMO

The hyaluronidase Hyal1 is clinically and functionally implicated in prostate cancer progression and metastasis. Elevated Hyal1 accelerates vesicular trafficking in prostate tumor cells, thereby enhancing their metastatic potential in an autocrine manner through increased motility and proliferation. In this report, we found Hyal1 protein is a component of exosomes produced by prostate tumor cell lines overexpressing Hyal1. We investigated the role of exosomally shed Hyal1 in modulating tumor cell autonomous functions and in modifying the behavior of prostate stromal cells. Catalytic activity of Hyal1 was necessary for enrichment of Hyal1 in the exosome fraction, which was associated with increased presence of LC3BII, an autophagic marker, in the exosomes. Hyal1-positive exosome contents were internalized from the culture medium by WPMY-1 prostate stromal fibroblasts. Treatment of prostate stromal cells with tumor exosomes did not affect proliferation, but robustly stimulated their migration in a manner dependent on Hyal1 catalytic activity. Increased motility of exosome-treated stromal cells was accompanied by enhanced adhesion to a type IV collagen matrix, as well as increased FAK phosphorylation and integrin engagement through dynamic membrane residence of ß1 integrins. The presence of Hyal1 in tumor-derived exosomes and its ability to impact the behavior of stromal cells suggests cell-cell communication via exosomes is a novel mechanism by which elevated Hyal1 promotes prostate cancer progression.


Assuntos
Exossomos/metabolismo , Hialuronoglucosaminidase/metabolismo , Neoplasias da Próstata/metabolismo , Transdução de Sinais , Autofagossomos/metabolismo , Adesão Celular , Comunicação Celular , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Movimento Celular , Ativação Enzimática , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Integrinas/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias da Próstata/patologia , Células Estromais/citologia , Células Estromais/metabolismo , Células Estromais/patologia , Regulação para Cima
6.
Cancer Res ; 78(24): 6807-6817, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30355619

RESUMO

: The intracellular effects and overall efficacies of anticancer therapies can vary significantly by tumor type. To identify patterns of drug-induced gene modulation that occur in different cancer cell types, we measured gene-expression changes across the NCI-60 cell line panel after exposure to 15 anticancer agents. The results were integrated into a combined database and set of interactive analysis tools, designated the NCI Transcriptional Pharmacodynamics Workbench (NCI TPW), that allows exploration of gene-expression modulation by molecular pathway, drug target, and association with drug sensitivity. We identified common transcriptional responses across agents and cell types and uncovered gene-expression changes associated with drug sensitivity. We also demonstrated the value of this tool for investigating clinically relevant molecular hypotheses and identifying candidate biomarkers of drug activity. The NCI TPW, publicly available at https://tpwb.nci.nih.gov, provides a comprehensive resource to facilitate understanding of tumor cell characteristics that define sensitivity to commonly used anticancer drugs. SIGNIFICANCE: The NCI Transcriptional Pharmacodynamics Workbench represents the most extensive compilation to date of directly measured longitudinal transcriptional responses to anticancer agents across a thoroughly characterized ensemble of cancer cell lines.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais/métodos , Perfilação da Expressão Gênica , National Cancer Institute (U.S.) , Pesquisa Translacional Biomédica/métodos , Antineoplásicos/farmacologia , Biomarcadores Tumorais , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Cloridrato de Erlotinib/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Internet , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais , Estados Unidos , Vorinostat/farmacologia , Gencitabina
7.
Mol Cancer Ther ; 17(3): 698-709, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29444985

RESUMO

The development of molecularly targeted agents has benefited from use of pharmacodynamic markers to identify "biologically effective doses" (BED) below MTDs, yet this knowledge remains underutilized in selecting dosage regimens and in comparing the effectiveness of targeted agents within a class. We sought to establish preclinical proof-of-concept for such pharmacodynamics-based BED regimens and effectiveness comparisons using MET kinase small-molecule inhibitors. Utilizing pharmacodynamic biomarker measurements of MET signaling (tumor pY1234/1235MET/total MET ratio) in a phase 0-like preclinical setting, we developed optimal dosage regimens for several MET kinase inhibitors and compared their antitumor efficacy in a MET-amplified gastric cancer xenograft model (SNU-5). Reductions in tumor pY1234/1235MET/total MET of 95%-99% were achievable with tolerable doses of EMD1214063/MSC2156119J (tepotinib), XL184 (cabozantinib), and XL880/GSK1363089 (foretinib), but not ARQ197 (tivantinib), which did not alter the pharmacodynamic biomarker. Duration of kinase suppression and rate of kinase recovery were specific to each agent, emphasizing the importance of developing customized dosage regimens to achieve continuous suppression of the pharmacodynamic biomarker at the required level (here, ≥90% MET kinase suppression). The customized dosage regimen of each inhibitor yielded substantial and sustained tumor regression; the equivalent effectiveness of customized dosage regimens that achieve the same level of continuous molecular target control represents preclinical proof-of-concept and illustrates the importance of proper scheduling of targeted agent BEDs. Pharmacodynamics-guided biologically effective dosage regimens (PD-BEDR) potentially offer a superior alternative to pharmacokinetic guidance (e.g., drug concentrations in surrogate tissues) for developing and making head-to-head comparisons of targeted agents. Mol Cancer Ther; 17(3); 698-709. ©2018 AACR.


Assuntos
Desenvolvimento de Medicamentos/métodos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Anilidas/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-met/metabolismo , Piridazinas/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Quinolinas/farmacologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos
8.
Horm Cancer ; 7(4): 260-71, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27307252

RESUMO

Prostate epithelial cells control the potency and availability of androgen hormones in part by inactivation and elimination. UDP-glucose dehydrogenase (UGDH) catalyzes the NAD(+)-dependent oxidation of UDP-glucose to UDP-glucuronate, an essential precursor for androgen inactivation by the prostate glucuronidation enzymes UGT2B15 and UGT2B17. UGDH expression is androgen stimulated, which increases the production of UDP-glucuronate and fuels UGT-catalyzed glucuronidation. In this study, we compared the glucuronidation potential and its impact on androgen-mediated gene expression in an isogenic LNCaP model for androgen-dependent versus castration-resistant prostate cancer. Despite significantly lower androgen-glucuronide output, LNCaP 81 castration-resistant tumor cells expressed higher levels of UGDH, UGT2B15, and UGT2B17. However, the magnitude of androgen-activated UGDH and prostate-specific antigen (PSA) expression, as well as the androgen receptor (AR)-dependent repression of UGT2B15 and UGT2B17, was blunted several-fold in these cells. Consistent with these results, the ligand-activated binding of AR to the PSA promoter and subsequent transcriptional activation were also significantly reduced in castration-resistant cells. Analysis of the UDP-sugar pools and flux through pathways downstream of UDP-glucuronate production revealed that these glucuronidation precursor metabolites were channeled through proteoglycan and glycosaminoglycan biosynthetic pathways, leading to increased surface expression of Notch1. Knockdown of UGDH diminished Notch1 and increased glucuronide output. Overall, these results support a model in which the aberrant partitioning of UDP-glucuronate and other UDP-sugars into alternative pathways during androgen deprivation contributes to the loss of prostate tumor cell androgen sensitivity by promoting altered cell surface proteoglycan expression.


Assuntos
Androgênios/farmacologia , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Neoplasias da Próstata/metabolismo , Uridina Difosfato Glucose Desidrogenase/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Calicreínas/genética , Calicreínas/metabolismo , Masculino , Modelos Biológicos , Regiões Promotoras Genéticas , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/genética , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo
9.
Biochemistry ; 55(22): 3157-64, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27198584

RESUMO

The enzyme UDP-glucose dehydrogenase (UGDH) catalyzes the reaction of UDP-glucose to UDP-glucuronate through two successive NAD(+)-dependent oxidation steps. Human UGDH apoprotein is purified as a mixture of dimeric and hexameric species. Addition of substrate and cofactor stabilizes the oligomeric state to primarily the hexameric form. To determine if the dynamic conformations of hUGDH are required for catalytic activity, we used site-specific unnatural amino acid incorporation to facilitate cross-linking of monomeric subunits into predominantly obligate oligomeric species. Optimal cross-linking was achieved by encoding p-benzoyl-l-phenylalanine at position 458, normally a glutamine located within the dimer-dimer interface, and exposing the enzyme to long wavelength ultraviolet (UV) radiation in the presence of substrate and cofactor. Hexameric complexes were purified by gel filtration chromatography and found to contain significant fractions of dimer and trimer (approximately 50%) along with another 10% higher-molecular mass species. The activity of the cross-linked enzyme was reduced by almost 60% relative to that of the un-cross-linked UGDH mutant, and UV exposure had no effect on the activity of the wild-type enzyme. These results support a model for catalysis in which the ability to dissociate the dimer-dimer interface is as important for maximal enzyme function as has been previously shown for the formation of the hexamer.


Assuntos
Aminoácidos/química , Reagentes de Ligações Cruzadas , Luz , Multimerização Proteica/efeitos da radiação , Uridina Difosfato Glucose Desidrogenase/química , Aminoácidos/efeitos da radiação , Catálise , Humanos , Cinética , Modelos Moleculares , Oxirredução , Processos Fotoquímicos , Conformação Proteica , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose Desidrogenase/metabolismo
11.
J Biol Chem ; 290(21): 13144-56, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25855794

RESUMO

Hyaluronan (HA) turnover accelerates metastatic progression of prostate cancer in part by increasing rates of tumor cell proliferation and motility. To determine the mechanism, we overexpressed hyaluronidase 1 (Hyal1) as a fluorescent fusion protein and examined its impact on endocytosis and vesicular trafficking. Overexpression of Hyal1 led to increased rates of internalization of HA and the endocytic recycling marker transferrin. Live imaging of Hyal1, sucrose gradient centrifugation, and specific colocalization of Rab GTPases defined the subcellular distribution of Hyal1 as early and late endosomes, lysosomes, and recycling vesicles. Manipulation of vesicular trafficking by chemical inhibitors or with constitutively active and dominant negative Rab expression constructs caused atypical localization of Hyal1. Using the catalytically inactive point mutant Hyal1-E131Q, we found that enzymatic activity of Hyal1 was necessary for normal localization within the cell as Hyal1-E131Q was mainly detected within the endoplasmic reticulum. Expression of a HA-binding point mutant, Hyal1-Y202F, revealed that secretion of Hyal1 and concurrent reuptake from the extracellular space are critical for rapid HA internalization and cell proliferation. Overall, excess Hyal1 secretion accelerates endocytic vesicle trafficking in a substrate-dependent manner, promoting aggressive tumor cell behavior.


Assuntos
Antígenos de Neoplasias/metabolismo , Movimento Celular , Proliferação de Células , Endocitose/fisiologia , Endossomos/metabolismo , Histona Acetiltransferases/metabolismo , Hialuronoglucosaminidase/metabolismo , Neoplasias da Próstata/patologia , Vesículas Transportadoras/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Apoptose , Western Blotting , Humanos , Ácido Hialurônico/metabolismo , Masculino , Neoplasias da Próstata/metabolismo , Transporte Proteico , Frações Subcelulares , Transferrina/metabolismo , Células Tumorais Cultivadas
12.
Oncogene ; 34(43): 5436-5446, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25639876

RESUMO

DNA methyltransferase 3A (DNMT3A) catalyzes cytosine methylation of mammalian genomic DNA. In addition to myeloid malignancies, mutations in DNMT3A have been recently reported in T-cell lymphoma and leukemia, implying a possible involvement in the pathogenesis of human diseases. However, the role of Dnmt3a in T-cell transformation in vivo is poorly understood. Here we analyzed the functional consequences of Dnmt3a inactivation in a mouse model of MYC-induced T-cell lymphomagenesis (MTCL). Loss of Dnmt3a delayed tumorigenesis by suppressing cellular proliferation during disease progression. Gene expression profiling and pathway analysis identified upregulation of 17 putative tumor suppressor genes, including DNA methyltransferase Dnmt3b, in Dnmt3a-deficient lymphomas as molecular events potentially responsible for the delayed lymphomagenesis in Dnmt3a(Δ/Δ) mice. Interestingly, promoter and gene body methylation of these genes was not substantially changed between control and Dnmt3a-deficient lymphomas, suggesting that Dnmt3a may inhibit their expression in a methylation-independent manner. Re-expression of both wild type and catalytically inactive Dnmt3a in Dnmt3a(Δ/Δ) lymphoma cells in vitro inhibited Dnmt3b expression, indicating that Dnmt3b upregulation may be directly repressed by Dnmt3a. Importantly, genetic inactivation of Dnmt3b accelerated lymphomagenesis in Dnmt3a(Δ/Δ) mice, demonstrating that upregulation of Dnmt3b is a relevant molecular change in Dnmt3a-deficient lymphomas that inhibits disease progression. Collectively, our data demonstrate an unexpected oncogenic role for Dnmt3a in MTCL through methylation-independent repression of Dnmt3b and possibly other tumor suppressor genes.


Assuntos
Carcinogênese/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Linfoma de Células T/genética , Linfoma de Células T/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Proliferação de Células/genética , DNA/genética , DNA Metiltransferase 3A , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Regiões Promotoras Genéticas/genética , Transcriptoma/genética , Regulação para Cima/genética , DNA Metiltransferase 3B
14.
Adv Cancer Res ; 123: 1-34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25081524

RESUMO

Hyaluronidases are a family of five human enzymes that have been differentially implicated in the progression of many solid tumor types, both clinically and in functional studies. Advances in the past 5 years have clarified many apparent contradictions: (1) by demonstrating that specific hyaluronidases have alternative substrates to hyaluronan (HA) or do not exhibit any enzymatic activity, (2) that high-molecular weight HA polymers elicit signaling effects that are opposite those of the hyaluronidase-digested HA oligomers, and (3) that it is actually the combined overexpression of HA synthesizing enzymes with hyaluronidases that confers tumorigenic potential. This review examines the literature supporting these conclusions and discusses novel mechanisms by which hyaluronidases impact invasive tumor cell processes. In addition, a detailed structural and functional comparison of the hyaluronidases is presented with insights into substrate selectivity and potential for therapeutic targeting. Finally, technological advances in targeting hyaluronidase for tumor imaging and cancer therapy are summarized.


Assuntos
Hialuronoglucosaminidase/fisiologia , Neoplasias/tratamento farmacológico , Processamento Alternativo , Animais , Movimento Celular , Progressão da Doença , Fibroblastos/metabolismo , Humanos , Ácido Hialurônico/química , Hialuronoglucosaminidase/metabolismo , Ratos-Toupeira , Conformação Molecular , Peso Molecular , Metástase Neoplásica , Neoplasias/patologia , Polímeros/química , Prognóstico , Ratos
15.
Adv Cancer Res ; 122: 69-101, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24974179

RESUMO

One of the hallmarks of cancer is the ability to generate and withstand unusual levels of oxidative stress. In part, this property of tumor cells is conferred by elevation of the cellular redox buffer glutathione. Though enzymes of the glutathione synthesis and salvage pathways have been characterized for several decades, we still lack a comprehensive understanding of their independent and coordinate regulatory mechanisms. Recent studies have further revealed that overall central metabolic pathways are frequently altered in various tumor types, resulting in significant increases in biosynthetic capacity and feeding into glutathione synthesis. In this review, we will discuss the enzymes and pathways affecting glutathione flux in cancer and summarize current models for regulating cellular glutathione through both de novo synthesis and efficient salvage. In addition, we examine the integration of glutathione metabolism with other altered fates of intermediary metabolites and highlight remaining questions about molecular details of the accepted regulatory modes.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glutationa/metabolismo , Neoplasias/metabolismo , Estresse Oxidativo , Animais , Soluções Tampão , Progressão da Doença , Glutationa Sintase/metabolismo , Homeostase , Humanos , Lipídeos/química , Camundongos , Neoplasias/patologia , Oxirredução , Fosforilação , Piroglutamato Hidrolase/metabolismo , gama-Glutamilciclotransferase/metabolismo
16.
Prostate Cancer ; 2014: 104248, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24804103

RESUMO

Prostate cancer is the most frequently diagnosed cancer in men and often requires surgery. Use of near infrared (NIR) technologies to perform image-guided surgery may improve accurate delineation of tumor margins. To facilitate preclinical testing of such outcomes, here we developed and characterized a PSMA-targeted small molecule, YC-27. IRDye 800CW was conjugated to YC-27 or an anti-PSMA antibody used for reference. Human 22Rv1, PC3M-LN4, and/or LNCaP prostate tumor cells were exposed to the labeled compounds. In vivo targeting and clearance properties were determined in tumor-bearing mice. Organs and tumors were excised and imaged to assess probe localization. YC-27 exhibited a dose dependent increase in signal upon binding. Binding specificity and internalization were visualized by microscopy. In vitro and in vivo blocking studies confirmed YC-27 specificity. In vivo, YC-27 showed good tumor delineation and tissue contrast at doses as low as 0.25 nmole. YC-27 was cleared via the kidneys but bound the proximal tubules of the renal cortex and epididymis. Since PSMA is also broadly expressed on the neovasculature of most tumors, we expect YC-27 will have clinical utility for image-guided surgery and tumor resections.

17.
J Biol Chem ; 288(49): 35049-57, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24145036

RESUMO

UDP-glucose dehydrogenase (UGDH) provides precursors for steroid elimination, hyaluronan production, and glycosaminoglycan synthesis. The wild-type UGDH enzyme purifies in a hexamer-dimer equilibrium and transiently undergoes dynamic motion that exposes the dimer-dimer interface during catalysis. In the current study we created and characterized point mutations that yielded exclusively dimeric species (obligate dimer, T325D), dimeric species that could be induced to form hexamers in the ternary complex with substrate and cofactor (T325A), and a previously described exclusively hexameric species (UGDHΔ132) to investigate the role of quaternary structure in regulation of the enzyme. Characterization of the purified enzymes revealed a significant decrease in the enzymatic activity of the obligate dimer and hexamer mutants. Kinetic analysis of wild-type UGDH and the inducible hexamer, T325A, showed that upon increasing enzyme concentration, which favors the hexameric species, activity was modestly decreased and exhibited cooperativity. In contrast, cooperative kinetic behavior was not observed in the obligate dimer, T325D. These observations suggest that the regulation of the quaternary assembly of the enzyme is essential for optimal activity and allosteric regulation. Comparison of kinetic and thermal stability parameters revealed structurally dependent properties consistent with a role for controlled assembly and disassembly of the hexamer in the regulation of UGDH. Finally, both T325A and T325D mutants were significantly less efficient in promoting downstream hyaluronan production by HEK293 cells. These data support a model that requires an operational dimer-hexamer equilibrium to function efficiently and preserve regulated activity in the cell.


Assuntos
Uridina Difosfato Glucose Desidrogenase/química , Uridina Difosfato Glucose Desidrogenase/metabolismo , Substituição de Aminoácidos , Estabilidade Enzimática , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteólise , Termodinâmica , Uridina Difosfato Glucose Desidrogenase/genética
18.
Mol Cell Biol ; 33(21): 4321-33, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24001767

RESUMO

DNA cytosine methylation is an epigenetic modification involved in the transcriptional repression of genes controlling a variety of physiological processes, including hematopoiesis. DNA methyltransferase 1 (Dnmt1) is a key enzyme involved in the somatic inheritance of DNA methylation and thus plays a critical role in epigenomic stability. Aberrant methylation contributes to the pathogenesis of human cancer and of hematologic malignancies in particular. To gain deeper insight into the function of Dnmt1 in lymphoid malignancies, we genetically inactivated Dnmt1 in a mouse model of MYC-induced T-cell lymphomagenesis. We show that loss of Dnmt1 delays lymphomagenesis by suppressing normal hematopoiesis and impairing tumor cell proliferation. Acute inactivation of Dnmt1 in primary lymphoma cells rapidly induced apoptosis, indicating that Dnmt1 is required to sustain T-cell lymphomas. Using high-resolution genome-wide profiling, we identified differentially methylated regions between control and Dnmt1-deficient lymphomas, demonstrating a locus-specific function for Dnmt1 in both maintenance and de novo promoter methylation. Dnmt1 activity is independent of the presence of Dnmt3a or Dnmt3b in de novo promoter methylation of the H2-Ab1 gene. Collectively, these data show for the first time that Dnmt1 is critical for the prevention and maintenance of T-cell lymphomas and contributes to aberrant methylation by both de novo and maintenance methylation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/fisiologia , Linfoma de Células T/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Carcinogênese/genética , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Hematopoese , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Linfócitos T/fisiologia , Transcrição Gênica , Transcriptoma
19.
Anal Biochem ; 440(2): 212-9, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23711726

RESUMO

Primary brain tumors present significant challenges for surgical resection because of their location and the frequent occurrence of malignant projections extending beyond the primary tumor. Visualization of the tumor margins during surgery is critical for a favorable outcome. We report the use of IRDye 800CW chlorotoxin (CLTX) as a targeted imaging agent for brain tumors in a spontaneous mouse model of medulloblastoma, ND2:SmoA1. Specificity and functionality of the targeted agent were confirmed in cell-based assays. Tumors were detected by magnetic resonance imaging and IRDye 800CW CLTX administered to individual animals for optical imaging at 1-month increments. The integrity of the blood-brain barrier (BBB) was measured by Evan's Blue perfusion prior to sacrifice. Results show that IRDye 800CW CLTX specifically targeted tumor tissue. The extravasation of Evan's Blue was observed in all tumors, suggesting that the presence of the tumors can introduce alterations in the permeability of the BBB. Because increased vascular permeability was observed early in the disease model, larger dye-labeled imaging agents that exceed current BBB size restrictions may warrant renewed consideration as candidates for tumor detection and surgical resection. Our study provides data characterizing in vitro and in vivo use of IRDye 800CW CLTX as a broadly applicable tumor imaging agent.


Assuntos
Benzenossulfonatos/química , Neoplasias Cerebelares/diagnóstico , Indóis/química , Meduloblastoma/diagnóstico , Venenos de Escorpião/química , Animais , Barreira Hematoencefálica/metabolismo , Linhagem Celular Tumoral , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Camundongos , Venenos de Escorpião/metabolismo
20.
Pathol Res Pract ; 208(11): 642-50, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23017666

RESUMO

The calcification process in aortic stenosis has garnered considerable interest but only limited investigation into selected signaling pathways. This study investigated mechanisms related to hypoxia, hyaluronan homeostasis, brown adipocytic differentiation, and ossification within calcified valves. Surgically explanted calcified aortic valves (n=14) were immunostained for markers relevant to these mechanisms and evaluated in the center (NodCtr) and edge (NodEdge) of the calcified nodule (NodCtr), tissue directly surrounding nodule (NodSurr); center and tissue surrounding small "prenodules" (PreNod, PreNodSurr); and normal fibrosa layer (CollFibr). Pearson correlations were determined between staining intensities of markers within regions. Ossification markers primarily localized to NodCtr and NodEdge, along with markers related to hyaluronan turnover and hypoxia. Markers of brown adipocytic differentiation were frequently co-localized with markers of hypoxia. In NodCtr and NodSurr, brown fat and ossification markers correlated with hyaluronidase-1, whereas these markers, as well as hypoxia, correlated with hyaluronan synthases in NodEdge. The protein product of tumor necrosis factor-α stimulated gene-6 strongly correlated with ossification markers and hyaluronidase in the regions surrounding the nodules (NodSurr, PreNodSurr). In conclusion, this study suggests roles for hyaluronan homeostasis and the promotion of hypoxia by cells demonstrating brown fat markers in calcific aortic valve disease.


Assuntos
Adipócitos Marrons/patologia , Estenose da Valva Aórtica/metabolismo , Valva Aórtica/metabolismo , Calcinose/metabolismo , Ácido Hialurônico/metabolismo , Hipóxia/metabolismo , Ossificação Heterotópica/patologia , Adipócitos Marrons/metabolismo , Idoso , Valva Aórtica/patologia , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/patologia , Biomarcadores/metabolismo , Calcinose/etiologia , Calcinose/patologia , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Feminino , Glucuronosiltransferase/metabolismo , Homeostase/fisiologia , Humanos , Hialuronan Sintases , Hialuronoglucosaminidase/metabolismo , Masculino , Ossificação Heterotópica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...